FinanceR
首发于FinanceR
[原]深入对比数据科学工具箱:Python和R之争

[原]深入对比数据科学工具箱:Python和R之争

作为分享主义者(sharism),本人所有互联网发布的图文均遵从CC版权,转载请保留作者信息并注明作者 Harry Zhu 的 FinanceR专栏:https://segmentfault.com/blog/harryprinc...,如果涉及源代码请注明GitHub地址:harryprince (HarryZhu) · GitHub。微信号: harryzhustudio
商业使用请联系作者。

概述

在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程。偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学。偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学。

从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R >> Python >> Scala

在实际工作中,对于小数据集的简单分析来说,使用EXCEL绝对是最佳选择。当我们需要更多复杂的统计分析和数据处理时,我们就需要转移到 Python 和 R 上。在确定工程实施和大数据集操作时,我们就需要依赖 Scala 的静态类型等工程方法构建完整的数据分析系统。

Scala 和 Excel 是两个极端,对于大多数创业公司而言,我们没有足够多的人手来实现专业化的分工,更多情况下,我们会在 Python 和 R 上花费更多的时间同时完成数据分析(A型)和数据构建(B型)的工作。而许多人也对 Python 和 R 的交叉使用存在疑惑,所以本文将从实践角度对 Python 和 R 中做了一个详细的比较。

应用场景对比

应用Python的场景

  • 网络爬虫/抓取:尽管 rvest 已经让 R 的网络爬虫/抓取变得容易,但 Python 的 beautifulsoup 和 Scrapy 更加成熟、功能更强大,结合django-scrapy我们可以很快的构建一个定制化的爬虫管理系统。

  • 连接数据库: R 提供了许多连接数据库的选择,但 Python 只用 sqlachemy 通过ORM的方式,一个包就解决了多种数据库连接的问题,且在生产环境中广泛使用。Python由于支持占位符操作,在拼接SQL语句时也更加方便。

  • 内容管理系统:基于Django,Python可以快速通过ORM建立数据库、后台管理系统,而R
    中的 Shiny 的鉴权功能暂时还需要付费使用。

  • API构建:通过Tornado这个标准的网络处理库,Python也可以快速实现轻量级的API,而R则较为复杂。

应用R的场景

  • 统计分析: 尽管 Python 里 Scipy、Pandas、statsmodels 提供了一系列统计工具 ,R 本身是专门为统计分析应用建立的,所以拥有更多此类工具。

  • 互动式图表/面板: 近来 bokeh、plotly、 intuitics 将 Python 的图形功能扩展到了网页浏览器,甚至我们可以用tornado+d3来进一步定制可视化页面,但 R 的 shiny 和 shiny dashboard 速度更快,所需代码更少。

此外,当今数据分析团队拥有许多技能,选择哪种语言实际上基于背景知识和经验。对于一些应用,尤其是原型设计和开发类,工作人员使用已经熟悉的工具会比较快速。

数据流编程对比

接着,我们将通过下面几个方面,对Python 和 R 的数据流编程做出一个详细的对比。

  1. 参数传递

  2. 数据读取

  3. 基本数据结构对照

  4. 矩阵转化

  5. 矩阵计算

  6. 数据操作

参数传递

Python/R 都可以通过命令行的方式和其他语言做交互,通过命令行而不是直接调用某个类或方法可以更好地降低耦合性,在提高团队协作的效率。

对于数据传输与解析,我们首推的格式是csv,因为一方面,csv格式的读写解析都可以通过 Python 和 R 的原生函数完成,不需要再安装其他包。另一方面,csv格式可以很快的转化为 data frame 格式,而data frame 格式是数据流分析的核心。数据传输与解析

不过,实际情况中,我们需要传输一些非结构化的数据,这时候就必须用到 JSNO 或者 YAML。

由于是从科学计算的角度出发,R 中的数据结构非常的简单,主要包括 向量(一维)、多维数组(二维时为矩阵)、列表(非结构化数据)、数据框(结构化数据)。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、元组(只读、有序)、集合(唯一、无序)、字典(Key-Value)等等。


基本数据结构


矩阵操作

实际上,Python(numpy) 和 R中的矩阵都是通过一个多维数组(ndarray)实现的。

数据框操作

参考 R 中的 data frame 结构,Python 的 Pandas包也实现了类似的 data frame 数据结构。现在,为了加强数据框的操作,R 中更是演进出了 data table 格式(简称dt),这种格式以 dt[where,select,group by] 的形式支持类似SQL的语法。



数据流编程对比的示例

Python 的 Pandas 中的管道操作
  (df
   .groupby(['a', 'b', 'c'], as_index=False)
   .agg({'d': sum, 'e': mean, 'f', np.std})
   .assign(g=lambda x: x.a / x.c)
   .query("g > 0.05")
   .merge(df2, on='a'))
R 的 dplyr 中的管道操作
flights %>% group_by(year, month, day) %>%
  select(arr_delay, dep_delay) 

  summarise(

    arr = mean(arr_delay, na.rm = TRUE),

    dep = mean(dep_delay, na.rm = TRUE)) %>%

  filter(arr > 30 | dep > 30)

数据可视化对比

绘制相关性散点图

对比数据相关性是数据探索常用的一种方法,下面是Python和R的对比。

Python
import seaborn as sns
import matplotlib.pyplot as plt
sns.pairplot(nba[["ast", "fg", "trb"]])
plt.show()
R
library(GGally)
ggpairs(nba[,c("ast", "fg", "trb")])

虽然我们最终得到了类似的图形,这里R中GGally是依赖于ggplot2,而Python则是在matplotlib的基础上结合Seaborn,除了GGally在R中我们还有很多其他的类似方法来实现对比制图,显然R中的绘图有更完善的生态系统。

绘制聚类效果图

这里以K-means为例,为了方便聚类,我们将非数值型或者有确实数据的列排除在外。

Python
from sklearn.cluster import KMeans
kmeans_model = KMeans(n_clusters=5, random_state=1)
good_columns = nba._get_numeric_data().dropna(axis=1)
kmeans_model.fit(good_columns)
labels = kmeans_model.labels_

from sklearn.decomposition import PCA
pca_2 = PCA(2)
plot_columns = pca_2.fit_transform(good_columns)
plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=labels)
plt.show()
R
library(cluster)
set.seed(1)
isGoodCol <- function(col){
   sum(is.na(col)) == 0 && is.numeric(col) 
}
goodCols <- sapply(nba, isGoodCol)
clusters <- kmeans(nba[,goodCols], centers=5)
labels <- clusters$cluster

nba2d <- prcomp(nba[,goodCols], center=TRUE)
twoColumns <- nba2d$x[,1:2]
clusplot(twoColumns, labels)


速度对比

Python
import numpy as np
xx = np.zeros(100000000)
%timeit xx[:] = 1
The slowest run took 9.29 times longer than the fastest. This could mean that an intermediate result is being cached 
1 loops, best of 3: 111 ms per loop
R
xx <- rep(0, 100000000)
system.time(xx[] <- 1)
user  system elapsed 
  1.326   0.103   1.433

显然这里 R 1.326的成绩 比 Python 的 Numpy 3:111 的速度快了不少。

事实上,现在 R 和 Python 的数据操作的速度已经被优化得旗鼓相当了。下面是R中的 data.table、dplyr 与 Python 中的 pandas 的数据操作性能对比:


结论

Python 的 pandas 从 R 中偷师 dataframes,R 中的 rvest 则借鉴了 Python 的 BeautifulSoup,我们可以看出两种语言在一定程度上存在的互补性,通常,我们认为 Python 比 R 在泛型编程上更有优势,而 R 在数据探索、统计分析是一种更高效的独立数据分析工具。所以说,同时学会Python和R这两把刷子才是数据科学的王道。


参考资料

发布于 2016-05-11

文章被以下专栏收录

    FinanceR 是一个和金融与R语言相关的技术专栏,主要话题包括组合优化、风险管理和量化研究等。