Python-Excel 模块哪家强?

Python-Excel 模块哪家强?

0. 前言

从网页爬下来的大量数据需要清洗?

成堆的科学实验数据需要导入 Excel 进行分析?

有成堆的表格等待统计?

作为人生苦短的 Python 程序员,该如何优雅地操作 Excel?


得益于前人的辛勤劳作,Python 处理 Excel 已有很多现成的轮子,使用较多的有:

xlwings

docs.xlwings.org/en/sta

openpyxl

openpyxl.readthedocs.io

pandas

pandas.pydata.org/

win32com

pythonexcels.com/python

xlsxwriter

xlsxwriter.readthedocs.io

DataNitro

datanitro.com/

xlutils

pypi.python.org/pypi/xl


上次我们介绍了下 xlutils,不少读者留言表示有比它更好使的模块,于是我们又把另外几个都体验了一遍。

本文将从运行环境、文档操作、基本功能和性能等方面对以上模块进行一次粗浅的比较,供大家参考。



1. 环境配置

再好的模块,也需要在正确的 Python 版本以及 Excel 版本才可运行。

提醒及注意:

  • xlutils 仅支持 xls 文件,即2003以下版本;
  • win32com 与 DataNitro 仅支持 windows 系统;
  • xlwings 安装成功后,如果运行提示报错“ImportError: no module named win32api”,请再安装 pypiwin32 或者 pywin32 包;
  • win32com 不是独立的扩展库,而是集成在其他库中,安装 pypiwin32 或者 pywin32 包即可使用;
  • DataNitro 是 Excel 的插件,安装需到官网下载。



2. 文档操作

虽然大家都是操作 Excel,但即使最基本的新建文件、修改文件、保存文件等功能,在不同的库中也存在差异。比如 xlsxwriter 并不支持打开或修改现有文件,xlwings 不支持对新建文件的命名,DataNitro 作为 Excel 插件需依托于软件本身,pandas 新建文档需要依赖其他库等等。


3. 基本功能

由于设计目的不同,每个模块通常着重于某一方面功能,各有所长。

xlwings

可结合 VBA 实现对 Excel 编程,强大的数据输入分析能力,同时拥有丰富的接口,结合 pandas/numpy/matplotlib 轻松应对 Excel 数据处理工作。

openpyxl

简单易用,功能广泛,单元格格式/图片/表格/公式/筛选/批注/文件保护等等功能应有尽有,图表功能是其一大亮点,缺点是对 VBA 支持的不够好。

pandas

数据处理是 pandas 的立身之本,Excel 作为 pandas 输入/输出数据的容器。

win32com

从命名上就可以看出,这是一个处理 windows 应用的扩展,Excel 只是该库能实现的一小部分功能。该库还支持 office 的众多操作。需要注意的是,该库不单独存在,可通过安装 pypiwin32 或者 pywin32 获取。

xlsxwriter

拥有丰富的特性,支持图片/表格/图表/筛选/格式/公式等,功能与openpyxl相似,优点是相比 openpyxl 还支持 VBA 文件导入,迷你图等功能,缺点是不能打开/修改已有文件,意味着使用 xlsxwriter 需要从零开始。

DataNitro

作为插件内嵌到 Excel 中,可完全替代 VBA,在 Excel 中使用 python 脚本。既然被称为 Excel 中的 python,协同其他 python 库亦是小事一桩。然而,这是付费插件...

xlutils

基于 xlrd/xlwt,老牌 python 包,算是该领域的先驱,功能特点中规中矩,比较大的缺点是仅支持 xls 文件。



4.性能

我们对几个库做了最基本的写入和读取测试,分别使用不同库进行添加及读取 1000行 * 700列 数据操作,得到所用时间,重复操作取平均值。另外在不同的电脑配置,不同的环境下结果肯定会有出入,数据仅供参考。

注:

  • xlutils 最多只能写入 256 列,即 1000*256,用时3.8秒,表现不错;
  • DataNitro 与 xlsxwriter 不能打开 Excel 文件。



5. 小结

通过以上的分析,相信大家对几个库都有了简单的了解。在编写文章的过程中,笔者也在思考各个库最适合的应用场景。

  • 不想使用 GUI 而又希望赋予 Excel 更多的功能,openpyxl 与 xlsxwriter,你可二者选其一;
  • 需要进行科学计算,处理大量数据,建议 pandas+xlsxwriter 或者 pandas+openpyxl;
  • 想要写 Excel 脚本,会 Python 但不会 VBA 的同学,可考虑 xlwings 或 DataNitro;
  • 至于 win32com,不管是功能还是性能都很强大,有 windows 编程经验的同学可以使用。不过它相当于是 windows COM 的封装,自身并没有很完善的文档,新手使用起来略有些痛苦。


你可根据自己的需求和生产环境,选择合适的 Python-Excel 模块。



6. 代码示例

最后,附上一些演示代码,大家可自行体会下不同模块的使用。

6.1 xlwings基本代码

import xlwings as xw
#连接到excel
workbook = xw.Book(r'path/myexcel.xlsx')#连接excel文件
#连接到指定单元格
data_range = workbook.sheets('Sheet1').range('A1')
#写入数据
data_range.value = [1,2,3]
#保存
workbook.save()

6.2 xlsxwriter基本代码

import xlsxwriter as xw
#新建excel
workbook  = xw.Workbook('myexcel.xlsx')
#新建工作薄
worksheet = workbook.add_worksheet()
#写入数据
worksheet.write('A1',1)
#关闭保存
workbook.close()

6.3 xlutils基本代码import xlrd #读取数据

import xlwt #写入数据
import xlutils #操作excel
#----xlrd库
#打开excel文件
workbook = xlrd.open_workbook('myexcel.xls')
#获取表单
worksheet = workbook.sheet_by_index(0)
#读取数据
data = worksheet.cell_value(0,0)
#----xlwt库
#新建excel
wb = xlwt.Workbook()
#添加工作薄
sh = wb.add_sheet('Sheet1')
#写入数据
sh.write(0,0,'data')
#保存文件
wb.save('myexcel.xls')
#----xlutils库
#打开excel文件
book = xlrd.open_workbook('myexcel.xls')
#复制一份
new_book = xlutils.copy(book)
#拿到工作薄
worksheet = new_book.getsheet(0)
#写入数据
worksheet.write(0,0,'new data')
#保存
new_book.save()

6.4 win32com基本代码

import win32com.client as wc
#启动Excel应用
excel_app = wc.Dispatch('Excel.Application')
#连接excel
workbook = excel_app.Workbooks.Open(r'e:/myexcel.xlsx' )
#写入数据
workbook.Worksheets('Sheet1').Cells(1,1).Value = 'data'
#关闭并保存
workbook.SaveAs('newexcel.xlsx')
excel_app.Application.Quit()

6.5 openpyxl基本代码

import openpyxl
# 新建文件
workbook = openpyxl.Workbook() 
# 写入文件
sheet = workbook.activesheet['A1']='data'
# 保存文件 
workbook.save('test.xlsx')

6.6 DataNitro基本代码

#单一单元格赋值
Cell('A1').value = 'data'
#单元区域赋值
CellRange('A1:B2').value = 'data'



其他文章及回答:


Python 与 Excel 不得不说的事 - Crossin的编程教室 - 知乎专栏

爆款游戏《贪吃蛇大作战》的 Python 实现 - Crossin的编程教室 - 知乎专栏

NBA 举办编程马拉松 - 数据分析时代的到来 - Crossin的文章 - 知乎专栏

想用 Python 做数据分析?先玩玩这个再说 - Crossin的文章 - 知乎专栏

用 Python 实现你的量化交易策略 - Crossin的文章 - 知乎专栏

学习编程的过程中可能会走哪些弯路,有哪些经验可以参考? - Crossin 的回答

你是如何自学 Python 的? - Crossin 的回答

Python 抓取网页乱码原因分析 - Crossin的编程教室 - 知乎专栏

Crossin的编程教室


微信ID:crossincode

论坛:Crossin的编程教室

编辑于 2018-12-18

文章被以下专栏收录

    本专栏旨在为编程初学者提供浅显易懂的入门科普。微信公众号:Crossin的编程教室(crossincode),内有面向零基础学习者的 Python 入门教程。代码问题可上 bbs.crossincode.com 发帖提问。