一文搞懂k近邻(k-NN)算法(一)

一文搞懂k近邻(k-NN)算法(一)

前几天和德川一起在学习会上讲解了k-NN算法,这里进行总结一下,力争用最通俗的语言讲解以便有利于更多同学的理解。

本文目录如下:

1.k近邻算法的基本概念,原理以及应用

2.k近邻算法中k的选取,距离的度量以及特征归一化的必要性

3.k近邻法的实现:kd树原理的讲解

4.kd树详细例子讲解

5.kd树的不足以及最差情况举例

6.k近邻方法的一些个人总结

一.k近邻算法的基本概念,原理以及应用

k近邻算法是一种基本分类和回归方法。本篇文章只讨论分类问题的k近邻法。

K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。(这就类似于现实生活中少数服从多数的思想)根据这个说法,咱们来看下引自维基百科上的一幅图:

如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类。

  • 如果K=3,绿色圆点的最邻近的3个点是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
  • 如果K=5,绿色圆点的最邻近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。

从上面例子我们可以看出,k近邻的算法思想非常的简单,也非常的容易理解,那么我们是不是就到此结束了,该算法的原理我们也已经懂了,也知道怎么给新来的点如何进行归类,只要找到离它最近的k个实例,哪个类别最多即可。

哈哈,没有这么简单啦,算法的核心思想确实是这样,但是要想一个算法在实际应用中work,需要注意的不少额~比如k怎么确定的,k为多少效果最好呢?所谓的最近邻又是如何来判断给定呢?哈哈,不要急,下面会一一讲解!

二.k近邻算法中k的选取以及特征归一化的重要性

  1. 选取k值以及它的影响

k近邻的k值我们应该怎么选取呢?

如果我们选取较小的k值,那么就会意味着我们的整体模型会变得复杂,容易发生过拟合!恩~结论说完了,太抽象了吧你,不上图讲解号称通俗讲解的都是流氓~好吧,那我就上图来讲解

假设我们选取k=1这个极端情况,怎么就使得模型变得复杂,又容易过拟合了呢?

假设我们有训练数据和待分类点如下图:

上图中有俩类,一个是黑色的圆点,一个是蓝色的长方形,现在我们的待分类点是红色的五边形。

好,根据我们的k近邻算法步骤来决定待分类点应该归为哪一类。我们由图中可以得到,很容易我们能够看出来五边形离黑色的圆点最近,k又等于1,那太好了,我们最终判定待分类点是黑色的圆点。

由这个处理过程我们很容易能够感觉出问题了,如果k太小了,比如等于1,那么模型就太复杂了,我们很容易学习到噪声,也就非常容易判定为噪声类别,而在上图,如果,k大一点,k等于8,把长方形都包括进来,我们很容易得到我们正确的分类应该是蓝色的长方形!如下图:

所谓的过拟合就是在训练集上准确率非常高,而在测试集上准确率低,经过上例,我们可以得到k太小会导致过拟合很容易将一些噪声(如上图离五边形很近的黑色圆点)学习到模型中,而忽略了数据真实的分布!

如果我们选取较大的k值,就相当于用较大邻域中的训练数据进行预测,这时与输入实例较远的(不相似)训练实例也会对预测起作用,使预测发生错误,k值的增大意味着整体模型变得简单。

k值增大怎么就意味着模型变得简单了,不要急,我会解释的!哈哈。

我们想,如果k=N(N为训练样本的个数),那么无论输入实例是什么,都将简单地预测它属于在训练实例中最多的类。这时,模型是不是非常简单,这相当于你压根就没有训练模型呀!直接拿训练数据统计了一下各个数据的类别,找最大的而已!这好像下图所示:

我们统计了黑色圆形是8个,长方形个数是7个,那么哈哈,如果k=N,我就得出结论了,红色五边形是属于黑色圆形的(明显是错误的好不,捂脸!

这个时候,模型过于简单,完全忽略训练数据实例中的大量有用信息,是不可取的。

恩,k值既不能过大,也不能过小,在我举的这个例子中,我们k值的选择,在下图红色圆边界之间这个范围是最好的,如下图:


(注:这里只是为了更好让大家理解,真实例子中不可能只有俩维特征,但是原理是一样的1,我们就是想找到较好的k值大小)

那么我们一般怎么选取呢?李航博士书上讲到,我们一般选取一个较小的数值,通常采取 交叉验证法来选取最优的k值。(也就是说,选取k值很重要的关键是实验调参,类似于神经网络选取多少层这种,通过调整超参数来得到一个较好的结果

2.距离的度量

在上文中说到,k近邻算法是在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,我们就说预测点属于哪个类。

定义中所说的最邻近是如何度量呢?我们怎么知道谁跟测试点最邻近。这里就会引出我们几种度量俩个点之间距离的标准。

我们可以有以下几种度量方式:

其中当p=2的时候,就是我们最常见的欧式距离,我们也一般都用欧式距离来衡量我们高维空间中俩点的距离。在实际应用中,距离函数的选择应该根据数据的特性和分析的需要而定,一般选取p=2欧式距离表示,这不是本文的重点。

恩,距离度量我们也了解了,下面我要说一下各个维度归一化的必要性!

3.特征归一化的必要性

首先举例如下,我用一个人身高(cm)与脚码(尺码)大小来作为特征值,类别为男性或者女性。我们现在如果有5个训练样本,分布如下:

A [(179,42),男] B [(178,43),男] C [(165,36)女] D [(177,42),男] E [(160,35),女]

通过上述训练样本,我们看出问题了吗?

很容易看到第一维身高特征是第二维脚码特征的4倍左右,那么在进行距离度量的时候,我们就会偏向于第一维特征。这样造成俩个特征并不是等价重要的,最终可能会导致距离计算错误,从而导致预测错误。口说无凭,举例如下:

现在我来了一个测试样本 F(167,43),让我们来预测他是男性还是女性,我们采取k=3来预测。

下面我们用欧式距离分别算出F离训练样本的欧式距离,然后选取最近的3个,多数类别就是我们最终的结果,计算如下:

由计算可以得到,最近的前三个分别是C,D,E三个样本,那么由C,E为女性,D为男性,女性多于男性得到我们要预测的结果为女性

这样问题就来了,一个女性的脚43码的可能性,远远小于男性脚43码的可能性,那么为什么算法还是会预测F为女性呢?那是因为由于各个特征量纲的不同,在这里导致了身高的重要性已经远远大于脚码了,这是不客观的。所以我们应该让每个特征都是同等重要的!这也是我们要归一化的原因!归一化公式如下:

讲到这里,k近邻算法基本内容我们已经讲完了。除去之后为了提高查找效率提出的kd树外,算法的原理,应用等方面已经讲解完毕,由于每篇文章内容不宜太多,kd树等知识下篇讲解,这里总结一下本文讲的内容。

三.本文的一点总结

1.我们提出了k近邻算法,算法的核心思想是,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。通俗说一遍算法的过程,来了一个新的输入实例,我们算出该实例与每一个训练点的距离(这里的复杂度为0(n)比较大,所以引出了下文的kd树等结构),然后找到前k个,这k个哪个类别数最多,我们就判断新的输入实例就是哪类!

2.与该实例最近邻的k个实例,这个最近邻的定义是通过不同距离函数来定义,我们最常用的是欧式距离。

3.为了保证每个特征同等重要性,我们这里对每个特征进行归一化

4.k值的选取,既不能太大,也不能太小,何值为最好,需要实验调整参数确定!

本文讲解结束了,真心希望对大家理解有帮助!欢迎大家指错交流~

参考:

李航博士《统计学习方法》

【量化课堂】一只兔子帮你理解 kNN

从K近邻算法、距离度量谈到KD树、SIFT+BBF算法 - 结构之法 算法之道 - 博客频道 - CSDN.NET

致谢:

德川,继豪,皓宇,施琦

编辑于 2017-03-25

文章被以下专栏收录