通俗理解条件熵

通俗理解条件熵

前面我们总结了信息熵的概念通俗理解信息熵 - 知乎专栏,这次我们来理解一下条件熵。

我们首先知道信息熵是考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。公式如下:

我们的条件熵的定义是:定义为X给定条件下,Y的条件概率分布的熵对X的数学期望

这个还是比较抽象,下面我们解释一下:

设有随机变量(X,Y),其联合概率分布为

条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。随机变量X给定的条件下随机变量Y的条件熵H(Y|X)

公式

下面推导一下条件熵的公式:

注意

注意,这个条件熵,不是指在给定某个数(某个变量为某个值)的情况下,另一个变量的熵是多少,变量的不确定性是多少?

因为条件熵中X也是一个变量,意思是在一个变量X的条件下(变量X的每个值都会取),另一个变量Y熵对X的期望。

这是最容易错的!

例子

下面通过例子来解释一下:


假如我们有上面数据:

设随机变量Y={嫁,不嫁}

我们可以统计出,嫁的个数为6/12 = 1/2

不嫁的个数为6/12 = 1/2

那么Y的熵,根据熵的公式来算,可以得到H(Y) = -1/2log1/2 -1/2log1/2

为了引出条件熵,我们现在还有一个变量X,代表长相是帅还是帅,当长相是不帅的时候,统计如下红色所示:

可以得出,当已知不帅的条件下,满足条件的只有4个数据了,这四个数据中,不嫁的个数为1个,占1/4

嫁的个数为3个,占3/4

那么此时的H(Y|X = 不帅) = -1/4log1/4-3/4log3/4

p(X = 不帅) = 4/12 = 1/3


同理我们可以得到:

当已知帅的条件下,满足条件的有8个数据了,这八个数据中,不嫁的个数为5个,占5/8

嫁的个数为3个,占3/8

那么此时的H(Y|X = 帅) = -5/8log5/8-3/8log3/8

p(X = 帅) = 8/12 = 2/3

计算结果

有了上面的铺垫之后,我们终于可以计算我们的条件熵了,我们现在需要求:

H(Y|X = 长相)

也就是说,我们想要求出当已知长相的条件下的条件熵。

根据公式我们可以知道,长相可以取帅与不帅俩种

条件熵是另一个变量Y熵对X(条件)的期望。

公式为:


H(Y|X=长相) = p(X =帅)*H(Y|X=帅)+p(X =不帅)*H(Y|X=不帅)

然后将上面已经求得的答案带入即可求出条件熵!

这里比较容易错误就是忽略了X也是可以取多个值,然后对其求期望!!

总结

其实条件熵意思是按一个新的变量的每个值对原变量进行分类,比如上面这个题把嫁与不嫁按帅,不帅分成了俩类。

然后在每一个小类里面,都计算一个小熵,然后每一个小熵乘以各个类别的概率,然后求和。

我们用另一个变量对原变量分类后,原变量的不确定性就会减小了,因为新增了Y的信息,可以感受一下。不确定程度减少了多少就是信息的增益。

后面会讲信息增益的概念,信息增益也是决策树算法的关键。


致谢:

德川,皓宇,继豪,施琦

编辑于 2017-04-25

文章被以下专栏收录