《小王爱迁移》系列之零:迁移学习领域著名学者和研究机构

《小王爱迁移》系列之零:迁移学习领域著名学者和研究机构

最近没有在写文章,在看文章找研究点。利用课余时间,列出了一些迁移学习领域代表性学者以及他们的最具代表性的工作, 以供大家分享。以这篇文章作为《小王爱迁移》系列的第零篇,也是说得通的。

一般这些工作都是由他们一作,或者是由自己的学生做出来的。当然,这里所列的文章比起这些大牛发过的文章会少得多,仅仅是他们最知名的工作。本文开源在了Github,会一直有更新,欢迎补充![顺带继续吐槽知乎不支持markdown]


应用研究


1. Qiang Yang @ HKUST

迁移学习领域权威大牛。他所在的课题组基本都做迁移学习方面的研究。迁移学习综述《A survey on transfer learning》就出自杨强老师课题组。他的学生们:

1). Sinno J. Pan

现为老师,详细介绍见第二条。

2). Ben Tan

主要研究传递迁移学习(transitive transfer learning)。代表文章:

  • Transitive Transfer Learning. KDD 2015.
  • Distant Domain Transfer Learning. AAAI 2017.

3). Derek Hao Hu

主要研究迁移学习与行为识别结合,目前在Snap公司。代表文章:

  • Transfer Learning for Activity Recognition via Sensor Mapping. IJCAI 2011.
  • Cross-domain activity recognition via transfer learning. PMC 2011.
  • Bridging domains using world wide knowledge for transfer learning. TKDE 2010.

4). Vencent Wencheng Zheng

也做行为识别与迁移学习的结合,目前在新加坡一个研究所当研究科学家。代表文章:

  • User-dependent Aspect Model for Collaborative Activity Recognition. IJCAI 2011.
  • Transfer Learning by Reusing Structured Knowledge. AI Magazine.
  • Transferring Multi-device Localization Models using Latent Multi-task Learning. AAAI 2008.
  • Transferring Localization Models Over Time. AAAI 2008.
  • Cross-Domain Activity Recognition. Ubicomp 2009.
  • Collaborative Location and Activity Recommendations with GPS History Data. WWW 2010.

5). Ying Wei

做迁移学习与数据挖掘相关的研究。代表工作:

  • Instilling Social to Physical: Co-Regularized Heterogeneous Transfer Learning. AAAI 2016.
  • Transfer Knowledge between Cities. KDD 2016.
  • Learning to Transfer. arXiv 2017.

其他还有很多学生都做迁移学习方面的研究,更多请参考杨强老师主页。


2. Sinno J. Pan @ NTU

杨强老师学生,比较著名的工作是TCA方法。现在在NTU当老师,一直都在做迁移学习研究。代表工作:

  • A Survey On Transfer Learning. TKDE 2010. [最著名的综述]
  • Domain Adaptation via Transfer Component Analysis. TNNLS 2011. [著名的TCA方法]
  • Cross-domain sentiment classification via spectral feature alignment. WWW 2010. [著名的SFA方法]
  • Transferring Localization Models across Space. AAAI 2008.


3. Lixin Duan @ UESTC

毕业于NTU,现在在UESTC当老师。代表工作:

  • Domain Transfer Multiple Kernel Learning. PAMI 2012.
  • Visual Event Recognition in Videos by Learning from Web Data. PAMI 2012.


4. Mingsheng Long @ THU

毕业于清华大学,现在在清华大学当老师,一直在做迁移学习方面的工作。代表工作:

  • Dual Transfer Learning. SDM 2012.
  • Transfer Feature Learning with Joint Distribution Adaptation. ICCV 2013.
  • Transfer Joint Matching for Unsupervised Domain Adaptation. CVPR 2014.
  • Learning transferable features with deep adaptation networks. ICML 2015. [著名的DAN方法]
  • Deep Transfer Learning with Joint Adaptation Networks. ICML 2017.


5. Judy Hoffman @ UC Berkeley & Stanford

Feifei Li的博士后,现在当老师。她有个学生叫做Eric Tzeng,做深度迁移学习。代表工作:

  • Simultaneous Deep Transfer Across Domains and Tasks. ICCV 2015.
  • Deep Domain Confusion: Maximizing for Domain Invariance. arXiv 2014.
  • Adversarial Discriminative Domain Adaptation. arXiv 2017.


6. Fuzhen Zhuang @ ICT, CAS

中科院计算所当老师,主要做迁移学习与文本结合的研究。代表工作:

  • Transfer Learning from Multiple Source Domains via Consensus Regularization. CIKM 2008.


7. Kilian Q. Weinberger @ Cornell U.

现在康奈尔大学当老师。Minmin Chen是他的学生。代表工作:

  • Distance metric learning for large margin nearest neighbor classification. JMLR 2009.
  • Feature hashing for large scale multitask learning. ICML 2009.
  • An introduction to nonlinear dimensionality reduction by maximum variance unfolding. AAAI 2006. [著名的MVU方法]
  • Co-training for domain adaptation. NIPS 2011. [著名的Co-training方法]


8. Fei Sha @ USC

USC教授。学生Boqing Gong提出了著名的GFK方法。代表工作:

  • Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation. ICML 2013.
  • Geodesic flow kernel for unsupervised domain adaptation. CVPR 2012. [著名的GFK方法]


9. Mahsa Baktashmotlagh @ U. Queensland

现在当老师。主要做流形学习与domain adaptation结合。代表工作:

  • Unsupervised Domain Adaptation by Domain Invariant Projection. ICCV 2013.
  • Domain Adaptation on the Statistical Manifold. CVPR 2014.
  • Distribution-Matching Embedding for Visual Domain Adaptation. JMLR 2016.


10. Baochen Sun @ Microsoft

现在在微软。著名的CoRAL系列方法的作者。代表工作:

  • Return of Frustratingly Easy Domain Adaptation. AAAI 2016.
  • Deep coral: Correlation alignment for deep domain adaptation. ECCV 2016.


11. Wenyuan Dai

著名的第四范式创始人,虽然不做研究了,但是当年求学时几篇迁移学习文章至今都很高引。代表工作:

  • Boosting for transfer learning. ICML 2007. [著名的TrAdaboost方法]
  • Self-taught clustering. ICML 2008.


理论研究

1. Arthur Gretton @ UCL

主要做two-sample test。代表工作:

  • A Kernel Two-Sample Test. JMLR 2013.
  • Optimal kernel choice for large-scale two-sample tests. NIPS 2012. [著名的MK-MMD]


2. Shai Ben-David @ U.Waterloo

很多迁移学习的理论工作由他给出。代表工作:

  • Analysis of representations for domain adaptation. NIPS 2007.
  • A theory of learning from different domains. Machine Learning 2010.


3. Alex Smola @ CMU

做一些机器学习的理论工作,和上面两位合作比较多。代表工作非常多,不列了。


4. John Blitzer @ Google

著名的SCL方法提出者,现在也在做机器学习。代表工作:

  • Domain adaptation with structural correspondence learning. ECML 2007. [著名的SCL方法]


5. Yoshua Bengio @ U.Montreal

深度学习领军人物,主要做深度迁移学习的一些理论工作。代表工作:

  • Deep Learning of Representations for Unsupervised and Transfer Learning. ICML 2012.
  • How transferable are features in deep neural networks? NIPS 2014.
  • Unsupervised and Transfer Learning Challenge: a Deep Learning Approach. ICML 2012.


6. Geoffrey Hinton @ U.Toronto

深度学习领军人物,也做深度迁移学习的理论工作。

  • Distilling the knowledge in a neural network. NIPS 2014.

========================

[作者简介]王晋东(不在家),中国科学院计算技术研究所博士生,目前研究方向为机器学习、迁移学习、人工智能等。作者联系方式:微博@秦汉日记 ,个人网站Jindong Wang is Here

=================

更多《小王爱迁移》系列文章:

《小王爱迁移》系列之零:迁移学习领域著名学者和研究机构

《小王爱迁移》系列之一:迁移成分分析(TCA)方法简介

《小王爱迁移》系列之二:联合分布适配(JDA)方法简介

《小王爱迁移》系列之三:深度神经网络的可迁移性

《小王爱迁移》系列之四:深度网络如何进行迁移学习(DaNN、DDC、DAN)

《小王爱迁移》系列之五:测地线流式核方法(GFK)

《小王爱迁移》系列之六:学习迁移(Learning To Transfer)

《小王爱迁移》系列之七:负迁移(Negative Transfer)

《小王爱迁移》系列之八:深度迁移学习文章解读

《小王爱迁移》系列之九:开放集迁移学习(Open Set Domain Adaptation)

《小王爱迁移》系列之十:张量迁移学习(tensor unsupervised domain adaptation)

《小王爱迁移》系列之十一:选择性对抗迁移学习(Selective Adversarial Network)

《小王爱迁移》系列之十二:新年新气象-重新整理的迁移学习资源仓库

《小王爱迁移》系列之十三:在线迁移学习(online transfer learning)

《小王爱迁移》系列之十四:用于部分迁移学习的深度加权对抗网络

《迁移学习简明手册》发布啦!

文章被以下专栏收录