【观点】运筹学发展概况(中)

【观点】运筹学发展概况(中)

作者:蓝色的信封
『运筹OR帷幄』责任编辑:爱牛氓的帆爷(东北大学系统工程硕士生)
本篇文章是由以上作者在博客上的优秀文章(原文链接: 运筹学的发展概况),通过『运筹OR帷幄』责任编辑整理修改而成的。
欢迎原链接转发,转载请前往 @留德华叫兽 的主页获取信息,盗版必究。
敬请关注和扩散本专栏及同名公众号,会邀请全球知名学者陆续发布运筹学、人工智能中优化理论等相关干货、知乎Live及行业动态:『运筹OR帷幄』大数据人工智能时代的运筹学


前言

『运筹OR帷幄』特别推出了运筹学历史回顾的专题运筹学的发展概论,本篇文章为运筹学概论(中),上篇已经推出【观点】运筹学发展概况(上),后续会推出下篇,尽请各位持续关注。60 多年以来,运筹学在研究与解决复杂的实际问题中不断地发展和创新,各种各样的新模型、新理论和新算法不断涌现,有线性的和非线性的,连续的和离散的、确定性的和不确定性的。至今它已成为一个庞大的、包含多个分支的学科,其中一些已经发展得比较成熟,另外一些还有待完善,还有一些才刚刚形成。


1.整数规划

整数规划是带整数变量的最优化问题,即求解一个全部或部分变量为整数的多元函数受约束于一组等式和不等式条件的最优化问题。整数规划的历史可以追溯到上世纪50 年代,丹齐格首先发现可以用0-1 变量来刻画最优化模型中的固定费用、变量上界、非凸分片线性函数等。他和富尔克森、约翰逊对旅行商问题的研究成为后来分支定界法和现代混合整数规划算法的开端。1958 年戈莫里发现了第一个一般线性整数规划的收敛算法-割平面方法。随着整数规划理论和算法的发展,整数规划已成为应用最广泛的最优化方法之一,特别是近年来整数规划算法技术和软件系统的发展和推广,整数规划得到了广泛的应用和发展。
整数规划问题的困难和挑战来源于3 个方面:一是大部分整数规划问题都是NP-难的,故本质上不太可能存在和线性规划与凸规划一样有效的算法;二是对整数点集合(如多面体格点理论和全单模理论)和整数变量的函数在数学上缺乏有力的理论和工具;三是实际问题的规模往往超过现有算法的求解能力,尽管现有的一些整数规划软件可以求解任意线性、二次和非线性整数规划问题,但往往不能处理来源于实际问题的整数规划模型,例如运输和交通中的大规模0-1 混合线性整数规划问题、金融优化中的离散约束问题等。整数规划未来发展方向和关键问题包括:
(1)整数多面体凸包的刻画;
(2)随机整数规划;
(3)多层整数规划;
(4)混合0-1 二次整数规划;
(5)协正规划;
(6)半定整数规划。


2.动态规划

当系统模型具备马尔科夫性,同时目标函数可分且嵌套单调时,基于贝尔曼提出的最优性原理,运用动态规划可将求解多阶段全局最优决策问题分解为一系列在各时间段上的局部优化问题。相比其他解法,特别是在有扰动或在随机情况下,动态规划总能有效地提供一个在当前信息集下的最优反馈控制策略。在过去的若干年里,动态规划取得了不少可喜的进展,特别是它被扩展到多目标动态规划;动态规划应用在本世纪前后的一个重大突破是其在海量数据分析中的应用,特别是人类基因组计划完成以后,它成为生物信息学的一个基本模型和工具。

然而,在克服被贝尔曼称之为“维数灾”的这一动态规划致命弱点方面,至今尚未取得突破性的进展。所以寻求克服维数灾的有效算法对动态规划在高维问题中的应用具有紧迫性。另外,求解不可分优化问题得到的最优策略并不满足最优性原理,或不具备时间一致性,这牵涉到不可分优化问题模型本身的合理性,因此怎样找出一组可分优化问题来逼近一个给定的不可分优化问题也对动态规划发展具有它显然的重要性。


3.全局优化

全局优化是非线性规划的一个分支,主要研究求解非凸优化问题的全局最优或近似全局最优解。由于非凸优化问题可能存在多个不同的局部最优点,基于导数信息的卡罗胥-库恩-塔克最优性条件不再适用于刻画非凸问题的全局最优性,从而,经典的局部优化方法不能保证收敛到全局最优解。全局优化较系统的研究始于上世纪70 年代。图伊和霍斯特是早期全局优化研究的先驱者,他们在凹规划的系统研究成果使全局优化开始形成一个真正的学科。90 年代初全局优化作为非线性规划的一个分支开始受到广泛的关注,越来越多的研究者开始从事该领域的研究,特别是对一些具有特殊结构的非凸优化问题的研究取得了许多突破性的成果,如非凸二次规划,非凸多项式规划,机会约束问题的凸逼近,以及在实际应用中遇到的许多特殊形式的非凸优化问题的研究都有很多深刻的研究成果。一些基于分支-定界的全局优化通用软件的发展及其在优化建模系统中的嵌入应用使学术界和工业界可以方便地求解一定规模的非凸问题的全局解。

全局优化问题的困难在于非凸性使卡罗胥-库恩-塔克条件一般不足以保证全局最优性,从而我们无法利用局部优化算法寻找全局最优点。本质上,由于导数是局部性质,因而不能期望基于导数性质的传统优化算法有希望求到全局解,全局算法需要函数和问题的全局性质。目前的数学理论很难或无法刻画一般多元函数的全局性质,这是全局优化问题的本质困难所在。全局优化的未来发展方向和关键问题包括:
(1)凸逼近和凸松弛方法;
(2)非凸二次规划;
(3)基于模拟仿真技术的全局优化算法;
(4)特殊结构的全局优化问题。

除了上面所介绍的分支外,数学规划在近些年来兴起了若干新的分支。例如,近10 年来国际上对鲁棒优化,微分方程所控制的优化,多项式优化,稀疏优化的研究相当重视,这些新方向的研究十分活跃。在即将举行的第21 届国际数学规划大会上这些新兴的分支都安排了专题报告。我国数学规划工作者,特别是青年科技工作者要充分重视这些新的方向,力争在国际上刚刚起步阶段参与研究,这样就有可能很快占领国际制高点。


4.组合优化

组合优化是20 世纪60 年代逐渐发展起来的一个交叉学科分支,它的研究对象是有限集合上的极值问题。一个组合优化问题由3 部分构成:已知条件的输入,可行解的描述,目标函数的定义。经典的组合优化问题包括网络流、旅行商、排序、装箱、着色、覆盖、最短网络等等。组合优化的一个理论基础是计算复杂性理论,据此组合优化可以分为两类:P-问题类和NP-难问题类;属于前者的问题有多项式时间算法,属于后者的问题一般认为不存在多项式时间算法,通常采用穷举法、启发式算法和近似算法等方法求解。
组合优化与图论、组合学、数理逻辑等有密切关系,在计算机科学、信息科学、管理科学和生命科学等学科有广泛的应用。

5.图论及算法

1736 年欧拉解决了哥尼斯堡的七桥问题,这被公认为图论的第一个结果。此后的200 多年里,图论并不被视为是数学的一个分支,图论的问题通常被看作一类智力游戏。然而,自上个世纪30 年代始,图论通过其广泛的应用以及与数学其他分支的紧密联系日显其重要性。尤其是,图论作为计算机科学的基础之一,在运筹学中扮演着不可或缺的角色,很多非常难解的组合优化问题都属于NP-完全的图论问题。在图论近几十年的研究中,学者们在取得一系列重要成果的同时,提出了包括整数流、子图覆盖和经典拉姆齐函数的估值在内的许多猜想或未解的难题。

未来受人关注的一些课题包括:

(1)图论中大多数结果都可以推广到超图中(通常推广方式不止一种),相应的超图问题有很多没有解决。对超图的相应性质和问题的研究不仅仅可以发现新的有意义的研究课题,而且还有助于解决图论中的一些已有问题。

(2)对随机图的一些特殊性质的刻画,特别是随机图在生成的过程中,其结构有时会发生突变,这种变化常常与日常的某种物理现象相关,对这种相变现象的研究是非常具有挑战性的课题。

(3)对超大图或者无限网络的研究将是图论的一个新热点方向。它有广泛的应用背景,其中包括实实在在的计算机通讯网络,无形而无处不在的万维网,基于因特网的社交网络,人脑的神经网络等等。对这些超大图性质的研究,需要新的数学工具;引入连续化方法,让这些超大图趋于“无穷”,然后研究其“极限图”的性质,是一个探索方向。这一方向同目前受到物理学界、控制论界重视的“复杂网络”研究相重合。


6.近似算法设计与分析

近似算法是求解组合优化问题的一类多项式时间算法,它们尽管不能确保对问题的每一个实例都可以求得最优解,但是可以保证求得的解的目标值与最优解的目标值相差不多。

自上世纪60 年代末格雷厄姆在研究排序问题时提出第一个近似算法以后,特别是70 年代初库克首次证明了存在NP-完全问题以来,为各种各样的组合优化问题设计近似算法就一直是组合优化领域的一个重要研究方向。它主要包括3 个方面:设计近似比越来越小的近似算法、设计运行时间越来越短的近似算法、证明近似比的下界或者不可近似性。已有的大量研究主要都集中在第一个方面,人们先后提出了对偶、半定规划、随机算法、平面划分和次模函数等技巧。第二方面的工作主要是针对存在多项式时间近似方案的NP-难问题,而第三方面的工作主要是利用上个世纪90 年代阿罗拉等人提出的概率可验证明系统。这一方向中有很多问题有待解决。


7.组合多面体

给定一个线性系统,判定其是否定义了一个整数多面体、是否为全对偶整数系统、是否为盒式对偶整数系统,这3 个判定问题是整数规划的核心问题,也构成了组合多面体理论的基本内容;这是因为当一个整数规划实例是由一个整数多面体所定义的,那么它可以在多项式时间内求解(一般的整数规划是NP-难解的)。包括罗瓦兹、施瓦维尔和埃德蒙兹在内的许多著名数学家都研究过组合多面体的结构刻画、计算复杂性等相关问题。另外,由于很多组合优化问题都可以非常容易地表示为整数规划问题,因而这些问题也是组合优化的重要研究课题。比如,组合优化中的一大类问题都可以用超图中的装填问题和覆盖问题来描述;装填问题是求含有边数最多的装填,而覆盖问题是求一个顶点覆盖其中所有顶点的权值之和最小。已经知道装填问题和覆盖问题都是NP-难解的,因此除非P=NP,它们都不存在多项式时间的算法。这两个组合优化问题都可以通过组合多面体的理论和方法研究,特别是:有向图和无向图上的圈装填和覆盖对偶关系以及有向图上的装填和反馈集覆盖对偶关系。




8.生物分子网络

生物分子网络是系统生物学的基本出发点和主要研究对象,因为从系统的观点看,生命系统是通过基因之间、蛋白之间、代谢物之间以及基因、蛋白质、代谢物、环境与功能和表象之间的相互作用来运行的,正是这些相互作用确定了细胞、组织、器官和生物个体的动态行为。所以系统生物学的根本挑战在于建立完整的、细致的生物分子间联系的描述,并籍此在分子水平及系统的观点来探索生命机理,解释复杂生命现象。最优化理论包括连续优化、组合优化和网络优化等运筹学方法和理论在生物分子网络的研究中都起到了重要作用。

典型的研究内容和问题包括,基因调控网络和蛋白质相互作用网络的数学建模,从生物进化角度出发的生物分子网络进化模型和算法,从高通量生物实验数据出发的网络重构算法,着眼于功能预测与标注的基因蛋白功能联系网络的构建和分析,以及生物分子网络的功能模块探测、网络比对等系统生物学和生物信息学算法。这些研究可以用于蛋白质功能预测和注释,以及进一步地为研究某些与特殊疾病相关的蛋白质功能注释提供有效的工具。


编辑于 2018-05-19

文章被以下专栏收录