松鼠的窝
首发于松鼠的窝
10935 梯度、散度、旋度、Jacobian、Hessian、Laplacian 的关系图

10935 梯度、散度、旋度、Jacobian、Hessian、Laplacian 的关系图

一、入门

  图中的细实线箭头表示了四种一阶微分运算,包括梯度、散度、旋度和 Jacobian。每条箭头的起点表示了相应运算的自变量的类型,终点表示了相应运算的因变量的类型,例如梯度运算是作用在标量上的,结果是向量。图中的「向量」默认为列向量。

  这四种一阶微分运算可以统一用算符 \nabla (读作 nabla)表示。Nabla 算符是一个形式向量 \nabla = \left[\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \right]^T ,它可以如下地作用于标量 f 或向量 \vec{v} 上:

  • 直接与标量 f 相乘,得到 f 的梯度 \nabla f
  • 与向量 \vec{v} 点乘,得到 \vec{v} 的散度 \nabla \cdot \vec{v} 。本文把点乘用矩阵乘法的形式写作 \nabla^T \vec{v}
  • 与向量 \vec{v} 叉乘,得到 \vec{v} 的旋度 \nabla \times \vec{v}
  • 若允许偏导算符写在变量的右边,则 \vec{v}\nabla^T 就可以表示 \vec{v} 的 Jacobian。

  图中的粗实线箭头表示了两种二阶微分运算,它们可以由两个一阶微分运算组合而成,即:

  • 梯度的散度就是 Laplacian;
  • 梯度的 Jacobian 就是 Hessian。

  图中的虚线箭头表示了一种不涉及微分的运算(迹)。在微分运算之后接上「迹」运算,可能得到另一种微分运算,如:

  • Jacobian 的迹就是散度;
  • Hessian 的迹就是 Laplacian。

二、入迷

  图中的四种一阶微分运算两两搭配,一共可以得到 7 种二阶微分运算。第一节的图中画出了两种,本节的图中画出了另外五种(浅蓝色与灰色)。这五种二阶微分运算并没有特别的名字,但其中有两种是恒等于 0 的:

  • 梯度的旋度恒为零向量;
  • 旋度的散度恒为 0。

其中,「梯度无旋」可以用下面的图形象说明(图片来自 @得分的 ):

如果梯度有旋会怎么样?

三、入魔

  Laplacian 是一个作用于标量的二阶微分运算,其结果也是标量。但我们也可以把它作用于一个向量的每一个元素,得到一个向量;这种运算称为向量 Laplacian。

  Laplacian 运算作用于标量 f 上的结果可以用 nabla 算符写成 \nabla^T \nabla f 。这种写法无法直接推广到向量 Laplacian,因为 \nabla^T \nabla \vec{v}\nabla 无法直接跟 \vec{v} 做矩阵乘法。但如果允许偏导算符写在变量右边,那就可以把向量 Laplacian 表示成 \vec{v} \nabla^T \nabla 。这是 Jacobian 运算与「矩阵右乘 \nabla 」运算的复合;后者的效果是对矩阵的每一行求散度。图中恰好有一个为「逐行散度」运算准备的空位,我们把它补充到图中。

  向量 Laplacian 的结果,恰好等于「散度的梯度」与「旋度的旋度」之差。为了体现出这种关系,我把「从向量到向量」的三种二阶微分运算改用橙红色箭头表示。

四、入土

  既然引入了「逐行散度」这个一阶微分运算,那就索性把它能组合出来的二阶微分运算也全都放到图里去吧!这样就得到了一个完美对称的图,它包含了 11 种二阶微分运算,其中:

  • 有两种比较常见:Laplacian 和 Hessian;
  • 有两种恒等于零:「梯度的旋度」和「旋度的散度」;
  • 有三种满足减法关系:向量 Laplacian = 梯度的散度 - 旋度的旋度;
  • 剩下的四种没有专门的名字,也很罕见。

  其中任何一种微分运算后面接上「迹」,都可以得到另一种同阶微分运算:

  • Jacobian 的迹就是散度;
  • Hessian 的迹就是 Laplacian;
  • 旋度的 Jacobian 的迹就是旋度的散度,恒等于 0;
  • 矩阵逐行散度的 Jacobian 的迹,就是它的逐行散度的散度。

但需要注意只能在运算之后接上「迹」,在运算之前接「迹」是不行的,比如矩阵的迹的梯度不等于它的逐行散度。

  如果有读者知道图中几种没有名字的运算叫什么名字、有什么用途,或者在图中内容之外还有什么值得包括进来的微分运算,欢迎补充。

文章被以下专栏收录