【观点】运筹学发展概况(下)

【观点】运筹学发展概况(下)

作者:蓝色的信封
『运筹OR帷幄』责任编辑:张帆(东北大学系统工程硕士生)

欢迎原链接转发,转载请前往 @留德华叫兽 的主页获取信息,盗版必究。
敬请关注和扩散本专栏及同名公众号,会邀请全球知名学者陆续发布运筹学、人工智能中优化理论等相关干货、知乎Live及行业动态:
『运筹OR帷幄』大数据人工智能时代的运筹学

本文已经发布于『运筹OR帷幄』公众号:【观点】运筹学发展概况(下)


『运筹OR帷幄』特别推出了运筹学历史回顾的专题运筹学的发展概论,

运筹学发展概况(上篇)运筹学发展概况(中篇)已经推出,敬请点击查看文章。



0、前言

『运筹OR帷幄』特别推出了运筹学历史回顾的专题运筹学的发展概论,本篇文章为运筹学概论(下),上篇和中篇已经推出,尽请各位关注专栏查看文章。60 多年以来,运筹学在研究与解决复杂的实际问题中不断地发展和创新,各种各样的新模型、新理论和新算法不断涌现,有线性的和非线性的,连续的和离散的、确定性的和不确定性的。至今它已成为一个庞大的、包含多个分支的学科,其中一些已经发展得比较成熟,另外一些还有待完善,还有一些才刚刚形成。


1、随机最优化

随机最优化问题是特指带有随机因素的最优化问题,需要利用概率统计、随机过程以及随机分析等工具。所谓的随机因素,包括环境的随机因素、控制变量不确定因素、准则值的不确定因素等等。例如,在考虑水库优化调度问题的时候,天然来水一般是三阶皮尔逊分布的随机变量。在考虑库存管理问题时,变动的需求常常考虑为外生的随机变量。这些都属于环境的不确定因素。在排队系统中服务速率确定后,真实的服务时间依然是随机变化的,这属于控制变量的不确定因素。使用药物最终能够达到的效果往往不是确定的,评判最优的值函数在很多问题中也具有不确定性等等。通常人们处理随机因素的方式有期望值方法,将随机的因素用它的期望值代替,将问题转化为确定性问题考虑。第二种方法是在概率意义下考虑优化问题。例如在置信区间范围内考虑优化问题,将问题转换为概率约束或者是机会约束的优化问题;又例如考虑极大化某些事件的概率问题,也称为相关机会约束问题。第二种方法相对于期望值方法的优点是考虑到各种风险的影响,缺点是使得问题的处理变得相对困难。


2、排队论

排队论模型被人们广泛用于半导体生产加工与设计、计算机通讯网络、交通运输等行业。随着科学技术的发展,描述上述类型的排队网络变得极为复杂,使得与传统的排队网络有很多本质的区别。当今人们对复杂的随机排队网络关心的问题有3 个:

(1)遍历性问题,即给定一个随机排队网络、若网络中每一服务台的服务强度严格小于1,那么描述系统的马氏过程是不是遍历?

(2)在便利条件下,当每一服务台服务强度趋向于1,描述系统的指标如队长、等待时间其扩散逼近是不是存在?

(3)在遍历的条件下如何找出最优的服务规则?第一个问题归结为针对排队系统、找出构造李雅普诺夫函数的一般有效方法,第二个问题的解决归结为具有可料性的动态补问题。

马氏决策的理论研究

随着人们对实际问题的深入理解,马氏决策理论的应用范畴越来越广泛。因此,提出的马氏决策理论问题越来越具有特殊性和广泛性。研究特殊结构的马氏决策理论越来越具有重要的意义。例如大规模对抗与合作系统的问题、金融监管的需求、一般监管理论的研究等等,都为马氏决策理论带来了新挑战。非标准准则的深入研究是应对这些需求的必要条件,如有超大状态空间问题的求解问题、带有纳什均衡的多阶段决策问题、带有适应性参数影响的非时齐问题等等。这些研究工作对于国民经济中的重大问题研究有着重要的帮助。


3、复杂系统可靠性理论

现代化技术和设备的飞速发展和更新,使得人们面对的系统越来越复杂,而诱发了许多人们无法理解的现象,例如:利用原来的系统可靠性理论得到的可靠性与实际系统人们感觉到的完全不同。如何发展相关的数学分析工具以解释这些问题就显得非常重要。在人们已经做出的工作中,出现一些有意义研究,例如:功能相依性分析、功能冗余性研究、概率理论的深入研究等等。因此,如何将系统可靠性理论的结论和方法上升到解决复杂系统可靠性问题是核心的难点。


4、软件可靠性理论

软件是随着计算机硬件的诞生产生的,其重要程度是不言而喻,现在已经成为人们生活中必不可缺的成分,特别是科技水平越高,就越离不开软件的支持。由于软件系统的高度复杂性(其复杂程度远远高于通常的复杂系统,事实上,软件系统往往不是一个有限的系统了)导致了人们通常在系统可靠性中使用的方法完全无效。人们有必要探索有效的相关理论,特别是数学工具,以有效地研究软件可靠性问题。事实上,将软件可靠性问题与软件测试过程结合是一种有效的方法。一方面,可以有效地指导软件的测试过程(目前,用于软件测试的费用已经占到整个软件开发费用的50%);一方面,可以正确地评估软件的可靠性。将测试过程与软件可靠性分析结合的过程中,人们发现必须发展诸如随机过程、排队理论、马氏决策理论以及相关的数学方法,以适用于分析软件的问题。


5、供应链的优化设计

随机环境下的复杂供应链系统的优化与设计问题是从管理科学中提出的数学问题。与传统的供应链模型相比,描述系统的随机性不再由简单的普阿松过程与独立同分布随机变量序列给出,而由相依的一些高斯过程来刻画。通常面临3 个基本数学问题:一是如何来找出求解人们所关心的系统数量指标的一般方法?二是找出这些求解方法之后,基于这些解、如何找出最优策略?三是供应链协调时,如何找出最优的协调策略即平衡点。这些问题的解决需要借助随机分析、随机最优控制和博弈论,且根据模型的自身特点,发展一套新的数学方法和理论。


6、算法博弈论

现代博弈论起源于上个世纪初,以策梅洛、博雷尔和冯·诺依曼等人的工作为代表。二次世界大战为博弈论的应用提供了广泛的背景,加快了博弈论体系的形成。

冯·诺伊曼和莫尔根施特恩在1944 年合著的《博弈论与经济行为》完善了博弈论的数学理论,使之系统化和公理化。此外,纳什等人也对博弈论做出了重大贡献,奠定了非合作博弈的基础。博弈论的研究对象与社会、政治、军事、经济、科学、技术等很多领域都有密切关系和广泛应用,一直是运筹学及相关领域的重要研究热点。近20 年以来,算法博弈论逐渐成为博弈论的一个热点方向。它将一个系统的形成和运行看作一个博弈过程,假设规划者从整体利益出发优化设计系统以达到全局最优,但博弈的参与者却从自身利益出发,做出自私的行动选择以达到个体最优;这常常使得系统的实际性能低于规划者期望的全局最优。

算法博弈论研究的主要问题包括:

(1)如何描述和计算参与者的自私行为所导致的系统性能;

(2)如何分析和刻画博弈中参与者的自私行为与系统整体性能之间的关系;

(3)如何设计一个合理的机制使得其系统在实际运行中能够真正实现整体利益最大化。

算法博弈论的特点是,它不仅仅关心均衡解和机制的存在性,还强调计算它们的复杂性,并设计有效的算法求出(或者近似)它们。


7、应急管理

应急管理主要是研究围绕非常规突发事件的一系列科学问题。它是本世纪以来人们十分关心的热点问题之一,得到国际学术界和政府有关管理部门越来越多的关注。应急管理所涉及的突发公共事件包括,自然灾害、事故灾难、公共卫生事件和社会安全事件。它们具有突发性、紧迫性、弱经济性、信息不确定性和物资需求量大等特点。

目前的研究大都局限在个案上,缺乏以数学为基础的系统理论。事实上,这种理论的形成已经有了雏形,例如:随机混杂系统的理论研究工作渐渐成为描述应急过程一种有效工具。随着两种时间尺度差异的变大,微观与宏观之间的相互影响机制在这种变化中不断显现,而应急过程在不同环境下的差异性变化被有效地刻画,随着环境变化的决策方案的适时性和有效性可以充分体现。这正是应急管理所关心的核心内容,即包括了应急事件的发起,也包括了应急事件的发展,还包括了应急事件恢复的控制等等。

另外,将预备阶段的预案和实施阶段的调整方案紧密结合在一起,使预案在实际应用时能根据所得的实时信息做出迅速调整,这种研究非常必要。针对应急管理的不同问题的数学模型需研究它们相应的求解算法,特别是大规模问题的快速求解算法的设计,也值得重视和深入研究。


8、统计和优化

统计学是一门研究如何有效地收集数据和分析数据的学科。它以数据为对象,研究各种实验和现象中的数量关系,以概率论等为基础,发展了一套系统地处理数据的统计理论和方法。随着科技进步和社会经济的发展,我们面临的数据量正以指数量级的速度增长,产生了许多高维数据、缺失数据和复杂结构数据。对这些复杂数据,人们很难依赖直观对现象进行判断,高维复杂数据的有效分析遇到了前所未有的挑战,这些挑战为统计学的发展创造了难得的历史机遇。

现在经常遇到一些复杂现象中产生的海量数据,我们对这些复杂现象缺乏理解,需要从这些数据出发来寻找和发现规律,这就要求开展“数据驱动”的研究。以概率论和随机分析为基础,以计算机为工具、引入最优化思想的统计方法将会成为一个发展方向。



关注下面图片公众号,在后台回复“运筹学”,免费获取运筹学各个分支领取相关资料, 后续会陆续更新和增加资料。

如果你是运筹学/人工智能硕博或在读,请在下图的公众号后台留言:“加微信群”。系统会自动辨认你的关键字,并提示您进一步的加群要求和步骤,邀请您进全球运筹或AI学者群(群内学界、业界大佬云集)。

同时我们有:【运筹学|优化爱好者】【供应链|物流】【人工智能】【数据科学|分析】千人QQ群,想入群的小伙伴可以关注下方公众号点击“加入社区”按钮,获得入群传送门。

学术界|工业界招聘、征稿等信息免费发布,请见下图:

编辑于 2018-05-19

文章被以下专栏收录