机器学习的数学基础-(三、概率论和数理统计)

本文分为高等数学、线性代数、概率论与数理统计三部分,所有公式为考研和考博时候使用的参考书所记录,部分来源于网络。由于一篇文章放不下,故分成三篇文章发布:

一、机器学习的数学基础-(一、高等数学)

二、机器学习的数学基础-(二、线性代数)

三、机器学习的数学基础-(三、概率论和数理统计)

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件: A \subset B ,若 A 发生,则 B 发生。

(2) 相等事件: A = B ,即 A \subset B ,且 B \subset A

(3) 和事件: A\bigcup B (或 A + B ), AB 中至少有一个发生。

(4) 差事件: A - BA 发生但 B 不发生。

(5) 积事件: A\bigcap B (或 {AB} ), AB 同时发生。

(6) 互斥事件(互不相容): A\bigcap B=\varnothing

(7) 互逆事件(对立事件):
A\bigcap B=\varnothing ,A\bigcup B=\Omega ,A=\bar{B},B=\bar{A}

2.运算律
(1) 交换律: A\bigcup B=B\bigcup A,A\bigcap B=B\bigcap A
(2) 结合律: (A\bigcup B)\bigcup C=A\bigcup (B\bigcup C)
(A\bigcap B)\bigcap C=A\bigcap (B\bigcap C)
(3) 分配律: (A\bigcup B)\bigcap C=(A\bigcap C)\bigcup (B\bigcap C)

3.德 \centerdot 摩根律

\overline{A\bigcup B}=\bar{A}\bigcap \bar{B} \overline{A\bigcap B}=\bar{A}\bigcup \bar{B}

4.完全事件组

{{A}_{1}}{{A}_{2}}\cdots {{A}_{n}} 两两互斥,且和事件为必然事件,即 {{A}_{i}}\bigcap {{A}_{j}}=\varnothing, i\ne j ,\underset{i=1}{\overset{n}{\mathop \bigcup }}\,=\Omega

5.概率的基本公式
(1)条件概率:
P(B|A)=\frac{P(AB)}{P(A)} ,表示 A 发生的条件下, B 发生的概率。
(2)全概率公式:
P(A)=\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\varnothing ,i\ne j,\underset{i=1}{\overset{n}{\mathop{\bigcup }}}\,{{B}_{i}}=\Omega
(3) Bayes公式:

P({{B}_{j}}|A)=\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\sum\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\cdots ,n
注:上述公式中事件 {{B}_{i}} 的个数可为可列个。

(4)乘法公式: P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})

P({{A}_{1}}{{A}_{2}}\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\cdots {{A}_{n-1}})

6.事件的独立性
(1) AB 相互独立 \Leftrightarrow P(AB)=P(A)P(B)
(2) ABC 两两独立
\Leftrightarrow P(AB)=P(A)P(B) ; P(BC)=P(B)P(C) ; P(AC)=P(A)P(C) ;
(3) ABC 相互独立
\Leftrightarrow P(AB)=P(A)P(B) ; P(BC)=P(B)P(C) ;
P(AC)=P(A)P(C) ; P(ABC)=P(A)P(B)P(C)

7.独立重复试验

将某试验独立重复 n 次,若每次实验中事件 A 发生的概率为 p ,则 n 次试验中 A 发生 k 次的概率为:
P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}

8.重要公式与结论

(1)P(\bar{A})=1-P(A)

(2) P(A\bigcup B)=P(A)+P(B)-P(AB)P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

(3) P(A-B)=P(A)-P(AB)

(4) P(A\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\bar{B}) , P(A\bigcup B)=P(A)+P(\bar{A}B)=P(AB)+P(A\bar{B})+P(\bar{A}B)

(5)条件概率 P(\centerdot |B) 满足概率的所有性质, 例如:. P({{\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)

P({{A}_{1}}\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B) P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)
(6)若 {{A}_{1}},{{A}_{2}},\cdots ,{{A}_{n}} 相互独立,则 $P(\bigcap\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{P({{A}_{i}})} ,P(\bigcup\limits_{i=1}^{n}{{{A}_{i}}})=\prod\limits_{i=1}^{n}{(1-P({{A}_{i}}))}

(7)互斥、互逆与独立性之间的关系: AB 互逆 \RightarrowAB 互斥,但反之不成立, AB 互斥(或互逆)且均非零概率事件 \Rightarrow A B 不独立。

(8)若 {{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}} 相互独立,则 f({{A}_{1}},{{A}_{2}},\cdots ,{{A}_{m}})g({{B}_{1}},{{B}_{2}},\cdots ,{{B}_{n}}) 也相互独立,其中 f(\centerdot ),g(\centerdot ) 分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义: F(x) = P(X \leq x), - \infty < x < + \infty

性质:

(1) 0 \leq F(x) \leq 1

(2) F(x) 单调不减

(3) 右连续 F(x + 0) = F(x)

(4) F( - \infty) = 0,F( + \infty) = 1

3.离散型随机变量的概率分布

P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i =1}^{\infty}p_{i} = 1

4.连续型随机变量的概率密度

概率密度 f(x) ;非负可积,且:

(1) f(x) \geq 0

(2) \int_{- \infty}^{+\infty}{f(x){dx} = 1}

(3) xf(x) 的连续点,则:

f(x) = F'(x) 分布函数 F(x) = \int_{- \infty}^{x}{f(t){dt}}

5.常见分布

(1) 0-1分布: P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1

(2) 二项分布: B(n,p)P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\cdots,n

(3) Poisson分布: p(\lambda)P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda},\lambda > 0,k = 0,1,2\cdots

(4) 均匀分布 U(a,b)f(x) = \{ \begin{matrix} & \frac{1}{b - a},a < x< b \\ & 0, \\ \end{matrix}

(5) 正态分布: N(\mu,\sigma^{2})\varphi(x) =\frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0,\infty < x < + \infty

(6)指数分布: E(\lambda):f(x) =\{ \begin{matrix} & \lambda e^{-{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix}

(7)几何分布: G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.

(8)超几何分布: H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\cdots,min(n,M)

6.随机变量函数的概率分布

(1)离散型: P(X = x_{1}) = p_{i},Y = g(X)

则: P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}

(2)连续型: X\tilde{\ }f_{X}(x),Y = g(x)

则: F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}f_{Y}(y) = F'_{Y}(y)

7.重要公式与结论

(1) X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) =\frac{1}{2}\Phi( - a) = P(X \leq - a) = 1 - \Phi(a)

(2) X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X -\mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a -\mu}{\sigma})

(3) X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)

(4) X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量 (X,Y) , 联合分布为 F(x,y) = P(X \leq x,Y \leq y)

2.二维离散型随机变量的分布

(1) 联合概率分布律 P\{ X = x_{i},Y = y_{j}\} = p_{{ij}};i,j =1,2,\cdots

(2) 边缘分布律 p_{i \cdot} = \sum_{j = 1}^{\infty}p_{{ij}},i =1,2,\cdots

p_{\cdot j} = \sum_{i}^{\infty}p_{{ij}},j = 1,2,\cdots

(3) 条件分布律 P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{{ij}}}{p_{\cdot j}} P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{{ij}}}{p_{i \cdot}}

3. 二维连续性随机变量的密度

(1) 联合概率密度 f(x,y)

1) f(x,y) \geq 0

2) \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1

(2) 分布函数: F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}

(3) 边缘概率密度: f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right){dy}} f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(4) 条件概率密度: f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)} f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}

4.常见二维随机变量的联合分布

(1) 二维均匀分布: (x,y) \sim U(D) , f(x,y) = \begin{cases} \frac{1}{S(D)},(x,y) \in D \\ 0,其他 \end{cases}

(2) 二维正态分布: (X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho) ,(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}

5.随机变量的独立性和相关性

XY 的相互独立: \Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right) :

\Leftrightarrow p_{{ij}} = p_{i \cdot} \cdot p_{\cdot j} (离散型) \Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right) (连续型)

XY 的相关性:

相关系数 \rho_{{XY}} = 0 时,称 XY 不相关,
否则称 XY 相关

6.两个随机变量简单函数的概率分布

离散型: P\left( X = x_{i},Y = y_{i} \right) = p_{{ij}},Z = g\left( X,Y \right) 则:

P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}

连续型: \left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right)
则:

F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy} , f_{z}(z) = F'_{z}(z)

7.重要公式与结论

(1) 边缘密度公式: f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,} f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(2) P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right){dxdy}}

(3) 若 (X,Y) 服从二维Y=y正态分布 N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)
则有:

1) X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).

2) XY 相互独立 \Leftrightarrow \rho = 0 ,即 XY 不相关。

3) C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)

4) {\ X} 关于 Y=y 的条件分布为: N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))

5) Y 关于 X = x 的条件分布为: N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))

(4) 若 XY 独立,且分别服从 N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}),
则: \left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0),

C_{1}X + C_{2}Y\tilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} C_{2}^{2}\sigma_{2}^{2}).

(5) 若 XY 相互独立, f\left( x \right)g\left( x \right) 为连续函数, 则 f\left( X \right)g(Y) 也相互独立。

随机变量的数字特征

1.数学期望

离散型: P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}

连续型: X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}

性质:

(1) E(C) = C,E\lbrack E(X)\rbrack = E(X)

(2) E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)

(3) 若 XY 独立,则 E(XY) = E(X)E(Y)

(4) \left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})

2.方差D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}

3.标准差\sqrt{D(X)}

4.离散型: D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}

5.连续型: D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx

性质:

(1) \ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0

(2) XY 相互独立,则 D(X \pm Y) = D(X) + D(Y)

(3) \ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)

(4) 一般有 D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}

(5) \ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)

(6) \ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1

6.随机变量函数的数学期望

(1) 对于函数 Y = g(x)

X 为离散型: P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}

X 为连续型: X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}

(2) Z = g(X,Y) ; \left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{{ij}} ; E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}},\left( X,Y \right)\sim f(x,y) ; E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}

7.协方差

Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack

8.相关系数

\rho_{{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ;
k 阶中心矩 E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}

性质:

(1) \ Cov(X,Y) = Cov(Y,X)

(2) \ Cov(aX,bY) = abCov(Y,X)

(3) \ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)

(4) \ \left| \rho\left( X,Y \right) \right| \leq 1

(5) \ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中 a > 0

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1
,其中 a < 0

9.重要公式与结论

(1) \ D(X) = E(X^{2}) - E^{2}(X)

(2) \ Cov(X,Y) = E(XY) - E(X)E(Y)

(3) \left| \rho\left( X,Y \right) \right| \leq 1,\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中 a > 0

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中 a < 0

(4) 下面5个条件互为充要条件:

\rho(X,Y) = 0 \Leftrightarrow Cov(X,Y) = 0 \Leftrightarrow E(X,Y) = E(X)E(Y)

\Leftrightarrow D(X + Y) = D(X) + D(Y)\Leftrightarrow D(X - Y) = D(X) + D(Y)

注: XY 独立为上述5个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用 X 表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体 Xn 个相互独立且与总体同分布的随机变量 X_{1},X_{2}\cdots,X_{n} ,称为容量为 n 的简单随机样本,简称样本。

统计量:设 X_{1},X_{2}\cdots,X_{n}, 是来自总体 X 的一个样本, g(X_{1},X_{2}\cdots,X_{n}) )是样本的连续函数,且 g() 中不含任何未知参数,则称 g(X_{1},X_{2}\cdots,X_{n}) 为统计量。

样本均值: \overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}

样本方差: S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}

样本矩:样本 k 阶原点矩: A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots

样本 k 阶中心矩: B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots

2.分布

\chi^{2} 分布: \chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n) ,其中 X_{1},X_{2}\cdots,X_{n}, 相互独立,且同服从 N(0,1)

t 分布: T = \frac{X}{\sqrt{Y/n}}\sim t(n) ,其中 X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),XY 相互独立。

F 分布: F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}) ,其中 X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),XY 相互独立。

分位数:若 P(X \leq x_{\alpha}) = \alpha, 则称 x_{\alpha}X\alpha 分位数

3.正态总体的常用样本分布

(1) 设 X_{1},X_{2}\cdots,X_{n} 为来自正态总体 N(\mu,\sigma^{2}) 的样本,

\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},} 则:

1) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ } 或者 \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)

2) \frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}

3) \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}

4) {\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)

4.重要公式与结论

(1) 对于 \chi^{2}\sim\chi^{2}(n) ,有 E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;

(2) 对于 T\sim t(n) ,有 E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)

(3) 对于 F\tilde{\ }F(m,n) ,有 \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};

(4) 对于任意总体 X ,有 E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}

编辑于 2018-05-08

文章被以下专栏收录

    机器学习爱好者,知识星球:92416895,微信公众号:机器学习初学者,www.ai-start.com,机器学习爱好者qq群:727137612