一篇文章搞懂装饰器所有用法(建议收藏)

一篇文章搞懂装饰器所有用法(建议收藏)

对于每一个学习 Python 的同学,想必对 @ 符号一定不陌生了,正如你所知, @ 符号是装饰器的语法糖,@符号后面的函数就是我们本文的主角:装饰器

装饰器放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为 装饰器

曾经我在刚转行做程序员时的一次的面试中,被面试官问过这样的两个问题:

1、你都用过装饰器实现过什么样的功能?

2、如何写一个可以传参的装饰器?

对于当时实战经验非常有限的我,第一个问题只能回答一些非常简单的用法,而第二个问题却没能回答上来。

当时带着这两个问题,我就开始系统的学习装饰器的所有内容。这些一直整理在自己的博客中,今天对其进行了大量的补充和勘误,发表在这里分享给大家。希望对刚入门以及进阶的朋友可以提供一些参考。


01. 装饰器语法糖

如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖。

它放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰函数装饰器

你要问我装饰器可以实现什么功能?我只能说你的脑洞有多大,装饰器就有多强大。

装饰器的使用方法很固定:

  • 先定义一个装饰函数(帽子)(也可以用类、偏函数实现)
  • 再定义你的业务函数、或者类(人)
  • 最后把这顶帽子带在这个人头上

装饰器的简单的用法有很多,这里举两个常见的。

  1. 日志打印器
  2. 时间计时器

02. 入门用法:日志打印器

首先是日志打印器。 实现的功能:

在函数执行前,先打印一行日志告知一下主人,我要执行函数了。 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。
# 这是装饰函数
def logger(func):
    def wrapper(*args, **kw):
        print('我准备开始计算:{} 函数了:'.format(func.__name__))

        # 真正执行的是这行。
        func(*args, **kw)

        print('啊哈,我计算完啦。给自己加个鸡腿!!')
    return wrapper

假如,我的业务函数是,计算两个数之和。写好后,直接给它带上帽子。

@logger
def add(x, y):
    print('{} + {} = {}'.format(x, y, x+y))

然后我们来计算一下。

add(200, 50)

快来看看输出了什么,神奇不?

我准备开始计算:add 函数了:
200 + 50 = 250
啊哈,我计算完啦。给自己加个鸡腿!

03. 入门用法:时间计时器

再来看看 时间计时器 实现功能:

顾名思义,就是计算一个函数的执行时长。
# 这是装饰函数
def timer(func):
    def wrapper(*args, **kw):
        t1=time.time()
        # 这是函数真正执行的地方
        func(*args, **kw)
        t2=time.time()

        # 计算下时长
        cost_time = t2-t1 
        print("花费时间:{}秒".format(cost_time))
    return wrapper

假如,我们的函数是要睡眠10秒(冏~,小明实在不知道要举什么例子了)。这样也能更好的看出这个计算时长到底靠不靠谱。

import time

@timer
def want_sleep(sleep_time):
    time.sleep(sleep_time)

want_sleep(10)

来看看,输出。真的是10秒耶。真历害!!!

花费时间:10.0073800086975098秒

04. 进阶用法:带参数的函数装饰器

通过上面简单的入门,你大概已经感受到了装饰的神奇魅力了。

不过,装饰器的用法远不止如此。我们今天就要把这个知识点讲透。

上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。

如果你有经验,你一定经常在项目中,看到有的装饰器是带有参数的。

装饰器本身是一个函数,既然做为一个函数都不能携带函数,那这个函数的功能就很受限。只能执行固定的逻辑。这无疑是非常不合理的。而如果我们要用到两个内容大体一致,只是某些地方不同的逻辑。不传参的话,我们就要写两个装饰器。小明觉得这不能忍。

那么装饰器如何实现传参呢,会比较复杂,需要两层嵌套。

同样,我们也来举个例子。

我们要在这两个函数的执行的时候,分别根据其国籍,来说出一段打招呼的话。

def chinese():
    print("我来自中国。")

def american():
    print("I am from America.")

在给他们俩戴上装饰器的时候,就要跟装饰器说,这个人是哪国人,然后装饰器就会做出判断,打出对应的招呼。

戴上帽子后,是这样的。

@say_hello("china")
def chinese():
    print("我来自中国。")

@say_hello("america")
def american():
    print("I am from America.")

万事俱备,只差帽子了。来定义一下,这里需要两层嵌套。

def say_hello(country):
    def wrapper(func):
        def deco(*args, **kwargs):
            if country == "china":
                print("你好!")
            elif country == "america":
                print('hello.')
            else:
                return

            # 真正执行函数的地方
            func(*args, **kwargs)
        return deco
    return wrapper

执行一下

american()
print("------------")
chinese()

看看输出结果。

你好!
我来自中国。
------------
hello.
I am from America

emmmm,这很NB。。。

05. 高阶用法:不带参数的类装饰器

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。

基于类装饰器的实现,必须实现 __call____init__两个内置函数。 __init__ :接收被装饰函数 __call__ :实现装饰逻辑。

class logger(object):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print("[INFO]: the function {func}() is running..."\
            .format(func=self.func.__name__))
        return self.func(*args, **kwargs)

@logger
def say(something):
    print("say {}!".format(something))

say("hello")

执行一下,看看输出

[INFO]: the function say() is running...
say hello!

06. 高阶用法:带参数的类装饰器

上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。 这就需要给类装饰器传入参数,给这个函数指定级别了。

带参数和不带参数的类装饰器有很大的不同。

__init__ :不再接收被装饰函数,而是接收传入参数。 __call__ :接收被装饰函数,实现装饰逻辑。

class logger(object):
    def __init__(self, level='INFO'):
        self.level = level

    def __call__(self, func): # 接受函数
        def wrapper(*args, **kwargs):
            print("[{level}]: the function {func}() is running..."\
                .format(level=self.level, func=func.__name__))
            func(*args, **kwargs)
        return wrapper  #返回函数

@logger(level='WARNING')
def say(something):
    print("say {}!".format(something))

say("hello")

我们指定WARNING级别,运行一下,来看看输出。

[WARNING]: the function say() is running...
say hello!

07. wraps 装饰器有啥用?

在 functools 标准库中有提供一个 wraps 装饰器,你应该也经常见过,那他有啥用呢?

先来看一个例子

def wrapper(func):
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行func 和下边 decorator(func) 是等价的,所以上面 func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是 inner_function

def wrapper(func):
    def inner_function():
        pass
    return inner_function

def wrapped():
    pass

print(wrapper(wrapped).__name__)
#inner_function

那如何避免这种情况的产生?方法是使用 functools .wraps 装饰器,它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

from functools import wraps

def wrapper(func):
    @wraps(func) 
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
# wrapped

准确点说,wraps 其实是一个偏函数对象(partial),源码如下

def wraps(wrapped,
          assigned = WRAPPER_ASSIGNMENTS,
          updated = WRAPPER_UPDATES):
    return partial(update_wrapper, wrapped=wrapped,
                   assigned=assigned, updated=updated)

可以看到wraps其实就是调用了一个函数update_wrapper,知道原理后,我们改写上面的代码,在不使用 wraps的情况下,也可以让 wrapped.__name__ 打印出 wrapped,代码如下:

from functools import update_wrapper

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
                       '__annotations__')

def wrapper(func):
    def inner_function():
        pass

    update_wrapper(inner_function, func, assigned=WRAPPER_ASSIGNMENTS)
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)

08. 使用偏函数与类实现装饰器

绝大多数装饰器都是基于函数和闭包实现的,但这并非制造装饰器的唯一方式。

事实上,Python 对某个对象是否能通过装饰器( @decorator)形式使用只有一个要求:decorator 必须是一个“可被调用(callable)的对象

对于这个 callable 对象,我们最熟悉的就是函数了。

除函数之外,类也可以是 callable 对象,只要实现了__call__ 函数(上面几个盒子已经接触过了),还有比较少人使用的偏函数也是 callable 对象。

接下来就来说说,如何使用 类和偏函数结合实现一个与众不同的装饰器。

如下所示,DelayFunc 是一个实现了 __call__ 的类,delay 返回一个偏函数,在这里 delay 就可以做为一个装饰器。(以下代码摘自 Python工匠:使用装饰器的小技巧)

import time
import functools

class DelayFunc:
    def __init__(self,  duration, func):
        self.duration = duration
        self.func = func

    def __call__(self, *args, **kwargs):
        print(f'Wait for {self.duration} seconds...')
        time.sleep(self.duration)
        return self.func(*args, **kwargs)

    def eager_call(self, *args, **kwargs):
        print('Call without delay')
        return self.func(*args, **kwargs)

def delay(duration):
    """
  装饰器:推迟某个函数的执行。
  同时提供 .eager_call 方法立即执行
  """
    # 此处为了避免定义额外函数,
  # 直接使用 functools.partial 帮助构造    # DelayFunc 实例
    return functools.partial(DelayFunc, duration)

我们的业务函数很简单,就是相加

@delay(duration=2)
def add(a, b):
    return a+b

来看一下执行过程

>>> add    # 可见 add 变成了 Delay 的实例
<__main__.DelayFunc object at 0x107bd0be0>
>>> 
>>> add(3,5)  # 直接调用实例,进入 __call__
Wait for 2 seconds...
8
>>> 
>>> add.func # 实现实例方法
<function add at 0x107bef1e0>

09. 内置装饰器:property

以上,我们介绍的都是自定义的装饰器。

其实Python语言本身也有一些装饰器。比如property这个内建装饰器,我们再熟悉不过了。

它通常存在于类中,可以将一个函数定义成一个属性,属性的值就是该函数return的内容。

通常我们给实例绑定属性是这样的

class Student(object):
    def __init__(self, name, age=None):
        self.name = name
        self.age = age

# 实例化
XiaoMing = Student("小明")

# 添加属性
XiaoMing.age=25

# 查询属性
XiaoMing.age

# 删除属性
del XiaoMing.age

但是稍有经验的开发人员,一下就可以看出,这样直接把属性暴露出去,虽然写起来很简单,但是并不能对属性的值做合法性限制。为了实现这个功能,我们可以这样写。

class Student(object):
    def __init__(self, name):
        self.name = name

    def set_age(self, age):
        if not isinstance(age, int):
            raise ValueError('输入不合法:年龄必须为数值!')
        if not 0 < age < 100:
            raise ValueError('输入不合法:年龄范围必须0-100')
        self._age=age

    def get_age(self):
        return self._age

    def del_age(self):
        self._age = None


XiaoMing = Student("小明")

# 添加属性
XiaoMing.set_age(25)

# 查询属性
XiaoMing.get_age()

# 删除属性
XiaoMing.del_age()

上面的代码设计虽然可以变量的定义,但是可以发现不管是获取还是赋值(通过函数)都和我们平时见到的不一样。 按照我们思维习惯应该是这样的。

# 赋值
XiaoMing.age = 25

# 获取
XiaoMing.age

那么这样的方式我们如何实现呢。请看下面的代码。

class Student(object):
    def __init__(self, name):
        self.name = name
        self.name = None

    @property
    def age(self):
        return self._age

    @age.setter
    def age(self, value):
        if not isinstance(value, int):
            raise ValueError('输入不合法:年龄必须为数值!')
        if not 0 < value < 100:
            raise ValueError('输入不合法:年龄范围必须0-100')
        self._age=value

    @age.deleter
    def age(self):
        del self._age

XiaoMing = Student("小明")

# 设置属性
XiaoMing.age = 25

# 查询属性
XiaoMing.age

# 删除属性
del XiaoMing.age

@property装饰过的函数,会将一个函数定义成一个属性,属性的值就是该函数return的内容。同时,会将这个函数变成另外一个装饰器。就像后面我们使用的@age.setter@age.deleter

@age.setter 使得我们可以使用XiaoMing.age = 25这样的方式直接赋值。 @age.deleter 使得我们可以使用del XiaoMing.age这样的方式来删除属性。

10. 其他装饰器:装饰器实战

读完并理解了上面的内容,你可以说是Python高手了。别怀疑,因为很多人都不知道装饰器有这么多用法呢。

在小明看来,使用装饰器,可以达到如下目的:

  1. 使代码可读性更高,逼格更高;
  2. 代码结构更加清晰,代码冗余度更低;

刚好我最近在写代码的时候也有一个场景,可以用装饰器很好的实现,暂且放上来看看。

这是一个实现控制函数运行超时的装饰器。如果超时,则会抛出超时异常。

有兴趣的可以看看。

import signal

class TimeoutException(Exception):
    def __init__(self, error='Timeout waiting for response from Cloud'):
        Exception.__init__(self, error)


def timeout_limit(timeout_time):
    def wraps(func):
        def handler(signum, frame):
            raise TimeoutException()

        def deco(*args, **kwargs):
            signal.signal(signal.SIGALRM, handler)
            signal.alarm(timeout_time)
            func(*args, **kwargs)
            signal.alarm(0)
        return deco
    return wraps

以上就是个人对装饰器用法的理解,整理不易,若对你有所帮助,不防给个赞呗。


编辑于 2019-08-24

文章被以下专栏收录